

Clear SOUP and COTS Software
for Medical Device Development
Chris Hobbs, Senior Developer, Safe Systems
QNX Software Systems Limited
chobbs@qnx.com

Abstract

In many industries, manufacturers have reduced
development times by using COTS (commercial-off-
the-shelf) software and hardware in their products.
Pressures to bring new, feature-rich products to
market quickly affect medical device manufacturers
as much as anyone, but the industry may be
reluctant to follow suit due to well-justified concerns
that COTS implies SOUP (software of uncertain
provenance), and thus may compromise device
safety and pre-market approval by the FDA and
other regulatory agencies.

While we should indeed exercise diligence and
caution when considering COTS software for medical
devices, neither the IEC 62304 “software for medical
devices” standard, nor the demands of functional
safety preclude its use. In fact, COTS software may
be perfectly acceptable, given stringent selection
criteria, and appropriate and equally stringent
validation of the completed systems and devices. If
we make the fine but critical distinction between
opaque SOUP1 (which should be avoided) and clear
SOUP, that is, SOUP for which source code, fault
histories and long in-use histories are available, we
will find that COTS software may be the optimal
choice for many safety-related medical devices.

The Usual Challenges

Medical device manufactures face the same
challenges as everyone building complex systems:
time, quality, size (number and complexity of
features), and cost. To this we must add functional
safety, and pre-market approval by the FDA, MDD,
MHRA, Health Canada and their counterparts in
every jurisdiction where the device will be used. This
approval is the sine qua non of medical devices.
Without it, a device might as well not exist.

1 Opaque SOUP is sometimes, jokingly, called “pea

SOUP” in contrast to clear SOUP, which has not yet
been dubbed “broth”.

That said, approval does not fundamentally change
the challenges we face when designing a software
system for a medical device; nor does it
fundamentally change our choice of solutions. These
are, essentially, two: a) design and build everything
ourselves (sometimes called “roll-your-own”), from
the OS or even the BSP2 up; and b) use available
software components where possible and
advantageous, integrating them with our own
components into the system we design.

Figure 1. Development is a series of compromises
between feature sets, delivery dates and quality. A change
to any one of these affects the others. For example,
shortening the delivery schedule reduces the feature set or
the quality, or both. The total cost of developing and
delivering a product is a function of these compromises.

Roll-your-own is probably only a viable choice for a
simple system, whose functionality is so limited that
it doesn’t even require a full OS. For anything more
complex, attempting to do everything ourselves
would likely take more time and effort, and entail far

2 Board Support Package: board-specific software for a

specific OS, containing the minimal device support
required to load the OS, including a bootloader and
drivers for the devices on the board.

Clear SOUP and COTS Software for Medical Device Development Ills QNX Software Systems

2

more risk than building a system with carefully
selected components. The trick, of course, is to
determine what available software can be integrated
into our medical system without compromising its
functional safety and approval requirements, then to
demonstrate that the completed system meets these
requirements.

Deterministic and
Non-deterministic Systems

In theory, any software system is deterministic; that
is, every state and state change in the system can
be known, documented and tested. In practice,
however, software systems have become so complex
that they should be treated as non-deterministic
systems.3 In practice, we cannot know or predict all
their possible states and state changes.

A crucial implication of this practical fact is that it is
no longer possible to rely wholly on testing when
validating a software system. A single truth
underlines why testing is insufficient validation in a
system where all states and state changes may not
be known and documented: testing can only
demonstrate the presence of faults; it cannot prove
that there are no faults. Medical device software is
no exception. In fact, in Medical device software—
Part 1: Guidance on the application of ISO 14971 to
medical device software, the AAMI cautions that a
pitfall to avoid is “Depending on testing as a RISK

CONTROL measure—even though 100% testing is
impossible”4.

A simple example of an elevator controller illustrates
well the limits of testing. Figure 2 shows a state
diagram for such a controller, which sends
instructions to an elevator and to the elevator doors
in a building. This controller is very simple, but it
contains a fault that may not be immediately
apparent. If, for example, we think of the danger that
someone might fall into the elevator shaft if a door
opens without the elevator present and design the
system to prevent this failure, we have not
necessarily ensured that someone does not get
stuck in the elevator.

3 The decreasing cost of multicore processors supporting

ever-greater and sophisticated feature sets has meant a
rapid increase in software complexity.

4 AAMI, Medical device software—Part 1: Guidance on the
application of ISO 14971 to medical device software,
2009. p. 55..

With the controller shown in Figure 2, we can get on
the elevator on the bottom floor, then find ourselves
on an endless journey from floor to floor. The
elevator doors never need to open. To save
ourselves, we would have to find a way to get
someone outside the system to either inject an
!open instruction when the elevator reaches a floor
and before the controller issues another !up or
!down instruction, or to force the controller to issue
an !open instruction after a specified number of
ups and downs, in much the same way that
telecommunications networks drop undeliverable
packets.

This simple scenario underlines one of the key
challenges we face when we attempt to verify even
very simple systems. We forgot to ask if all elevator
rides must end, and designed a system with a very
serious fault. Of course, as a system increases in
complexity, so will the number of these sorts of
faults.

Figure 2. A simple elevator system with a fault: there is no
guarantee that the elevator cage doors open at a floor
before the elevator is called to another floor.5

5 Adapted from Gerard J. Holzmann, The SPIN Model

Checker. Boston: Addison-Wesley, 2004.

2Wait 2

1Wait 1

0Wait 0

!close(2)

!close(0)

!close(1)

!open(1)

!open(0)

!open(2)

!up

!down

!up

!down

2 > 0

0 > 2

!up

!down

!up

!down

QNX Software Systems Clear SOUP and COTS Software for Medical Device Development Ills

 3

In short, if ever it was possible to use testing to
demonstrate that a system did not contain faults,
this was so only because the system was so simple
that it was deterministic, in both theory and in
practice6. We could know and test all possible states
and state changes; we could know and ask every
required question. Using formal model proving to
augment testing, we can show the correctness of
designs but, as the simple elevator example makes
clear, we can do so only if we ask the right
questions. We cannot abandon testing, of course,
but we must treat its results statistically and
complement it with other methods, such as stringent
process controls, design validation, and statistical
analysis of fault histories.

Functional Safety

Malfunctions in medical devices don't usually make
the same sort of headlines as airplane or train
accidents. For the patient, however, the
consequences of an error in a medical device
system may be just as dramatic or tragic, and the
medical device industry is morally, legally and
financially bound to ensure as much as is humanly
possible that its products do no harm.

Despite the enormous effort invested in validating
the functional safety of medical devices, faults,
errors and failures continue to appear. For example,
the FDA recorded that there were 200,000
pacemaker recalls due to software in the U.S.
between 1990 and 2000, and that between 1985
and 2005 there were 30,000 deaths and 600,000
injuries from medical devices (1985-2005), of which
some eight percent were attributable to software.7

Functional safety refers to the capacity of a safety-
related system to function as it needs to function to
maintain the safety of the system: it is the
continuous operation of a safety-related system
performing its primary task while ensuring that
persons, property and the environment are free from

6 The Engineering Safety Management Yellow Book 3,

Application Note 2: Software and EN 50128, published
by Railway Safety on behalf of the UK railway industry
even suggests that “if a device has few enough internal
stored states that it is practical to cover them all in
testing, it may be better to regard it as hardware.” p. 3.

7 Daniel Jackson et al., eds. Software for Dependable
Systems: Sufficient Evidence? Washington: National
Academies Press, 2007. p. 23.

unacceptable risk or harm8. In short, a functionally
safe system does what it is designed to do and
doesn’t unintentionally harm anyone or anything. A
radiation therapy unit, for instance, is functionally
safe if it does not inflict unacceptable harm to the
operator, other persons or the environment, or
healthy cells in the patient. Its functional safety is
not compromised by the harm it may do to
cancerous cells, because this is its intended use.

What Is Functional Safety? An Example

Consider a medical device that emits potentially
hazardous electro-magnetic radiation (e.g., X-rays).
If a technician were to remove the protective shield
while the radiation was turned on it could potentially
create “unacceptable injury or harm” to her.

Having identified this hazard, we could address it in
several ways. We could build the equipment so that
it would be physically impossible for the shield to be
removed when the switch was in the “on” position:
the switch in that position physically covered the
shield. This solution would be a safe one, but it
would not be one of functional safety, because
safety is intrinsic and passive: it does not rely on the
continued functioning of any subsystem.

Alternatively, we could create an active subsystem
that detected the removal of the shield and shut off
the radiation before it became a hazard. This
subsystem would constitute functional safety: the
continued safety of the overall system depends on
the subsystem continuing to function correctly.

Thus, building a safe system can rely on both
passive safety measures (such as a design that
makes removing the shield impossible) and on
active measures (a system that detects shield
removal and shuts down the radiation). In practice,
most complex systems use a combination of both. In
the context of our discussion of COTS, the
assumption is that the safe operation of the medical
device requires some sort of active system, hence
functional safety.

Multiple standards exist specifying both what
constitutes a functionally safe system in a given
context, and the processes and activities that must
be scrupulously followed throughout a product or

8 Chris Hobbs et al., “Building Functional Safety into

Complex Software Systems, Part I”. QNX Software
Systems, 2011.

Clear SOUP and COTS Software for Medical Device Development Ills QNX Software Systems

4

system lifecycle in order to ensure the product’s or
system’s functional safety. Among the best known
are IEC 61508 (electrical, electronic, programmable),
ISO 26262 (automotive) and the CENLEC 5012x
series (rail transportation), which define functional
safety and target safety integrity levels (SIL) for
systems in their respective areas, and specify the
processes and activities for demonstrating these.

IEC 62304

IEC 62304 is becoming the de facto global standard
for medical device software life cycle processes. The
FDA has driven its development, and it is being
harmonized with EU standard 93/42 EWG (MDD) 9.
Unlike IEC 61508 and EN 50128, for example,
IEC 62304 does not define common numerical
values for acceptable failure rates; conformity to
IEC 62304 doesn’t imply a SIL rating as does, for
instance, conformity to IEC 61508, which is
meaningless without one (e.g. IEC 61508 SIL3).

IEC 62304 is limited to the “framework of life cycle
PROCESSES with ACTIVITIES and TASKS necessary for

9 Cristoph Gerber, “Introduction into software lifecycle for

medical devices”, Stryker Navigation: Presentation
(4 Sept. 2008)

the safe design and maintenance
of MEDICAL DEVICE SOFTWARE”10. It
makes two assumptions about
quality management and risk
management: a) that the software
for the medical device is
“developed and maintained within
a quality management system”
(i.e. ISO 13485 or ISO 90003); and
b) that risk management conforms
to ISO 14971, plus additional
minor requirements for software
addressed in IEC 62304, Clause 7.

Significantly, IEC 62304 does not
prescribe how its requirements are
to be met; that is, it does not
specify a software development
model or particular documents that
must be submitted to support
claims of conformity. IEC 62304
calls up ISO 14971, which sets the
requirements for a medical devices
risk management system. Neither
of these standards specifies risk
levels, or prescribes or proposes a
method for determining the

probability of software failure based on traditional
statistical methods11. We are free to choose the
development model most appropriate to our
requirements, as we are free to choose the methods
we ultimately use to validate the functional safety
claims we make about the systems we build.

IEC 62304 does, however, set out the processes
(including a risk management process), activities
and tasks required throughout the software lifecycle,
stipulating that this cycle does not end with product
release, but continues through maintenance and
problem resolution as long as the software is
operational. It also defines safety classifications
according to the level of harm a failure could cause
to a patient, operator or other person. These
classifications are analogous to the FDA
classifications of medical devices: A (no possible
injury or damage to health), B (possibility of non-
serious injury or harm) and C (possibility of serious
injury or harm, or death).

10 International Electrotechnical Commission, IEC 62304:

Medical Device Software—Software Lifecycle Processes.
First edition, 2005-2006. Geneva: International
Electrotechnical Commission, 2006. Introduction.

11 Gerber, slide 19.

Figure 3. Some of the standards contributing to functional safety in medical devices.

QNX Software Systems Clear SOUP and COTS Software for Medical Device Development Ills

 5

Finally, and of particular importance in the context
of this discussion, IEC 62304 explicitly mentions
SOUP, which it defines as a

SOFTWARE ITEM that is already developed and
generally available and that has not been developed
for the purpose of being incorporated into the
MEDICAL DEVICE (also known as “off-the-shelf
software”) or software previously developed for
which adequate records of the development

PROCESSES are not available.12

It is important to note that in the above, IEC 62304
a) assumes that off-the-shelf software (commercial
or otherwise) will be used, and b) offers two
definitions of SOUP, which can be either (or both of)
software not developed for the medical device in
question, or software with unavailable or inadequate
records of its development processes.

IEC 62304 does not prohibit using SOUP in a
medical device, and in fact several clauses in the
standard are written with the assumption that SOUP
will in fact be used. Section 5.1.1 “Software
development plans”, for instance, states that “The
plan shall address … software configuration and
change management, including SOUP CONFIGURATION

ITEMS”13, and SOUP is the explicit subject of sections
such as 5.3.4 “Specify SYSTEM hardware and
software required by SOUP item”.

The question, then, is not whether it is permissible
to use COTS software and/or SOUP in medical
device software, but a) how to decide whether a
particular COTS software or SOUP item is
appropriate for the medical device in question, and
b) how to validate that this COTS item or SOUP item
supports the functional safety requirements for this
medical device. To answer this question we should
start by attempting to add some precision to our
definition of SOUP, and to the relationship between
SOUP and COTS software.

SOUP and Clear SOUP

Some software vendors make a rather simplistic—
and incorrect—distinction between COTS and
SOUP. COTS, they say, has a vendor standing
behind it, a company that has staked its
reputation—and, not incidentally, its financial
future—on this software functioning as specified,
while SOUP has no one standing behind it.

12 IEC 62304 3.29 SOUP.
13 IEC 62304 5.1.1 Software development plans.

This distinction is valid in the same way that it may
be preferable to buy medication from a reputable
pharmacy rather than from some web site that uses
spam to advertise. However, it is also largely
irrelevant, since for us most COTS software is quite
likely also SOUP; the processes the vendor followed
(or failed to follow!), the source code, fault histories,
and indeed everything else we would have available
if we were developing the product ourselves may not
be available to us or to anyone else outside the
vendor’s organization.

A more useful distinction is between (opaque) SOUP
and clear SOUP. This distinction is not based on any
commercial criteria (commercial or not commercial).
It is founded in the artefacts available to support a
safety case for the software. These artefacts are
needed to support our claims about the risks and
safety levels of the systems we build with the SOUP.

Quality and Approval

Pre-market approval by regulatory agencies is
inseparable from quality, but the two are not
interchangeable. First, it is quite easy to image a
device or tool, such as a syringe, that performs its
primary function (puncture a vein and draw blood)
extremely well, but that could never receive approval
because the process used to manufacture it
includes no sterilization process; or, the syringe
could meet all approval requirements: be sharp,
sterile, and safe and easy to use, but have a
tendency to disintegrate during initial sterilization
and thus, though it poses no danger to patients or
medical practitioners, it does not meet required
standards for quality.

A COTS system, such as a Microsoft Windows OS,
may have a well-documented development process,
its vendor presumable adheres to this well-defined
and documented development process and is in
possession of the source code which it can readily
examine, and has tracked and documented the
software’s failure history. However, since this
information is not available for public scrutiny, as far
as we are concerned the Windows OS is (opaque)
SOUP.14

14 Here the analogy with a medication bought from a

reputable pharmacy or through a spamming web site
falls apart. The medication sold by the pharmacy is not
like the opaque software: every ingredient (including the
“inactive” ones), every process used to create or extract

Clear SOUP and COTS Software for Medical Device Development Ills QNX Software Systems

6

OS Architecture

The OS on which the COTS software runs must
support the vendor’s functional safety claims. We
must, therefore, evaluate the OS, and its
architecture in particular, since the OS architecture
is critical to system dependability. Important
characteristics to look for are:

Pre-emptible kernel operations — to ensure that the
system meets realtime commitments, the
RTOS must allow kernel operations to be
preempted, and time windows during which
preemption may not occur should be brief.

Memory protection — the OS architecture should
separate applications and critical processes
in their own memory spaces so that a fault
cannot propagate across the system.

Priority inheritance—to protect against priority
inversions the RTOS should support
assigning, until the blocking task completes,
the priority of a blocked higher-priority task to
the lower-priority thread doing the blocking.

Partitioning — to guarantee availability, the RTOS
should support fixed or, preferably, adaptive
partitioning, which enforces resource budgets
but uses a dynamic scheduling algorithm to
reassign CPU cycles from partitions that are
not using them to partitions that can benefit
from extra processing time.

High availability — a self-starting software watchdog
should monitor, stop and, if safety can be
assured, restart processes without requiring a
system reset.

In contrast, open source projects such as Apache
and Linux have their source code and fault histories
freely available to anyone who cares to examine
them. Thanks to years of active service, this
software’s characteristics are well known. Like in-
house software, this software, though it is, literally,
“of uncertain provenance”, can be scrutinized with
code symbolic execution and path coverage
analysis, and the software’s long (and freely

these ingredients, and the finished medication must be
available for regulatory scrutiny. This is why
pharmaceutical and biotechnology companies rely so
heavily on their patents; they may not keep trade secrets,
and hence patents are their only protection.

available) history make findings from statistical
analysis particularly relevant.

Hence, we can consider software developed in these
open source projects clear SOUP; that is, SOUP that
we can examine, verify and validate as though we
had written it ourselves.

Despite these attractive characteristics, open source
software may not be the best solution for medical
systems, however. The difficulty with using open
source software in functionally safe systems is that
the processes for open source development are
neither clearly defined nor well documented—and
this is precisely what concerns IEC 62304. We can’t
know how the software was designed, coded or
verified, and validating functional safety claims
without this knowledge is an improbable endeavour.
Add to this that SOUP or COTS software may include
more functionality than is needed, which leaves
dead code in the system, a practice that functional
safety standards, such as IEC 61508, expressly
discourage.

Of course, if a COTS software vendor makes
available its product’s source code and fault history,
it clarifies its SOUP. Some vendors choose to go one
better and provide, not just clear SOUP, but a clear
recipe for the SOUP. That is, they release to their
customers the detailed processes they use to build
their software, along with its complete development
history—essentially an informal audit trail that we
can use to help substantiate claims about the
software’s reliability and availability. Some vendors
may even go a step further and make available for
scrutiny the evidence they presented in order to
obtain certification (e.g. IEC 61508 SIL3) for their
product.

In addition to its importance for the medical device’s
initial approval, the COTS software recipe for clear
SOUP (documented development and validation
artefacts and histories, and documented processes)
can prove invaluable for subsequent validation and
approval following product upgrades.15 It is worth
noting, for example, that

In a study the FDA conducted between 1992 and
1998, 242 out of 3,140 device recalls (7.7 percent)
were found to be due to faulty software. Of these,
192—almost 80 percent—were caused by defects
introduced during software maintenance.

15 See Anil Kumar, “Easing the IEC 62304 Compliance

Journey for Developers to Certify Medical Devices”
Medical Electronic Device Solutions, 20 June 2011.

QNX Software Systems Clear SOUP and COTS Software for Medical Device Development Ills

 7

In other words, the faults were introduced after the
devices had gone to market: the devices worked,
and then someone either broke them or uncovered
previously undiscovered faults. Ideally, then, when
developing and maintaining and upgrading software
systems for medical devices where functional safety
is an issue (IEC 62304 B and C class devices) we
should work with clear SOUP made with a clear
recipe that has a long and well-documented history
of success in the field.

Shopping for COTS Software

At the highest level, the question we must ask of any
COTS software we are considering for a medical
device is “What proofs does the software vendor
provide that his product is what we need?” In
addition to all the standard questions about
functionality, features, cost, support and so on, this
question must include “Will this COTS software
support us in getting approval for our medical
device?”

If we assume that, since we did not develop it
ourselves, all COTS software is SOUP of some sort,
then we must find out what sort of SOUP it is. If it
proves to be “software previously developed for
which adequate records of the development
PROCESSES are not available” we may have difficulty
justifying its use in our system. First, validating
functional safety claims for systems with such
software requires substantial additional effort and
expense. Second, this software cannot meet the
IEC 62304 requirement for well-documented and
rigorously followed software lifecycle processes.

If, on the other hand, the COTS software is clear
SOUP, our task may be significantly less arduous.
That is, if the software was not “developed for the
purpose of being incorporated into the MEDICAL

DEVICE” but adequate records of its development
processes are available, it may be a good candidate
for our medical device.

COTS Checklist

The following can be used as a high-level checklist
to help us determine if a specific COTS component
is a good candidate for integration into our medical
device software system—essentially, if the COTS
software is clear SOUP. Our decisions concerning
the COTS software will necessarily depend on how
well it supports the functional safety and compliance
requirements we have specified for our complete
system.

Functional Safety Claims
We can begin by examining the functional safety
claims the COTS software vendor makes about his
software.

Does the vendor make any functional safety
claims?

Do these claims meet the functional safety
requirements for our project?

Are the context and limits of the claims
specified? For instance, are these claims for
continuous operation or for on-demand
operation?

Do the COTS software functional safety claims
specify the probability of dangerous failure? Or,
inversely, what claims does the vendor make
about the software’s dependability?

Does the vendor define “sufficient
dependability”, and how does he quantify his
dependability claims? For example, is the
quantification of the (essentially meaningless)
“five-nines” type, or does it provide meaningful
information about availability and reliability in
relevant contexts?

Does the vendor quantify the COTS software
claims of:

 Availability: How often does the system
respond to events in a timely manner?

 Reliability: How often are these responses
correct?

Process
A defined and documented process covering the
entire software lifecycle is a sine qua non
requirement; without this, we need not go further.

Has the COTS software vendor implemented a
quality management system (QMS)?

Does this system meet the requirements of one
of:

 The ISO 9000 family of QMS standards?

 ISO 15504 (Software Process Improvement
Capability Determination (SPICE)?

 Capability Maturity Model Integration
(CMMI)?

Clear SOUP and COTS Software for Medical Device Development Ills QNX Software Systems

8

What processes does the vendor use for source
control, including revisions and versions?

How does the vendor document, track and
resolve defects, including those found through
verification and validation, and in the field?

Does the vendor classify defects and follow up
with fault analysis?

Fault-tree Analysis
Fault-tree analysis, using a method such as
Bayesian believe networks is an essential tool both
for discovering and resolving design errors, and for
estimating system dependability. It also provides
artefacts that can be reviewed by auditors and
agencies that must approve the medical device for
market.16

Was the COTS software evaluated with fault-
tree analysis?

Did the analysis use both a priori (cause to
effect) and a posteriori (effect to cause)
evidence?

Are the results of the fault-tree analysis
available to us?

Static Analysis
Static analysis is invaluable for locating suspect
code, and its use has been recommended by
agencies such as the FDA,17 which is “investigating
various static analysis techniques, e.g., symbolic
execution, abstract interpretation, and reverse
engineering, and applying these to analyze software
in medical devices….” The goal of this undertaking
is to improve the ability of the FDA’s Center for
Devices and Radiological Health (CDRH) “to assess
software quality, both during pre-market and post-
market reviews” and to “improve the state-of-the-art
in static analysis technology by improving precision
and efficiency of static analysis tools, specifically
applied to medical device software”.18

16 See Chris Hobbs, “Fault Tree Analysis with Bayesian

Belief Networks for Safety-Critical Software”, 2010.
17 For example, “static analyses provide a very effective

means to detect errors before execution of the code…”
FDA, General Principles of Software Validation; Final
Guidance for Industry and FDA Staff. 11 Jan. 2002.

18 FDA, Research Project: Static Analysis of Medical Device
Software, updated 11 Feb. 2011.

Figure 3. A very simple fault tree. Failures are numbered
(1,2, etc.), while letters identify leaves (A, B, etc.)..

Does the COTS software vendor use static
analysis to identify potential problems in his
product?

What static analysis techniques does the
vendor use?

 Syntax checking against published coding
standards?

 Fault probability estimates?

 Correctness proofs (e.g. assertions in the
code)?

 Symbolic execution (static analysis-hybrid)?

What artefacts does the COTS software vendor
provide to support the findings from his static
analyses?

Proven-In-Use Data
Proven-in-use data is invaluable when reviewing
COTS software dependability claims, and for
building claims. Anyone building a system for which

QNX Software Systems Clear SOUP and COTS Software for Medical Device Development Ills

 9

one day (even in the very distant and nebulous
future) he may be required to show proof of
dependability should build gathering in-use data into
his business model.

Can the COTS software vendor provide proven-
in-use data?

How far back does the data go?

How comprehensive is the data?

 What is the sample size for which data is
available?

 Does this sample represent a small or large
percentage of the vendor’s runtimes?

 How does the vendor gather this data?

Does the vendor provide fault analysis results
with the proven-in-use data, or just usage data?

Design Artefacts
Design and validation artefacts are one of the key
differences between SOUP and clear SOUP. If the
COTS software vendor cannot provide an extensive
set of artefacts, there is little reason to select his
wares over open source software.

What design artefacts does the COTS software
vendor provide with his software?

Does the vendor provide:

 Architectural design documents?

 Detailed design documents?

What are the test plans and methods for the
COTS software, and does the vendor publish
the detailed results?

What other validation methods does the COTS
software vendor use (see other sections above),
and are the methods and detailed results
available?

Does the vendor maintain and make available a
traceability matrix, from requirements to
deliver, and is it available for scrutiny?

What records does the vendor keep of the
software life cycle, including:

 Changes?

 Issues and their resolutions?

The Safety Manual
The Safety Manual is another sine qua non
requirement. If the COTS software does not include
a Safety Manual, return the product to the shelf and
try another vendor.

Does the Safety Manual state the functional
safety claims for the COTS software?

Does the Safety Manual define the context and
constraints for the COTS software functional
safety claims? These should include the
environment and the usage where the
functional safety claims are valid. For example:

 “This list of processor architectures is
exhaustive.”

 “Floating point operations SHALL NOT be
performed in a signal handler.”

 “Critical budgets are limited to the window
size.”

Does the vendor provide training on the safe
application of the product?

Certified Components

Even if all the above recommendations have been
followed, and the COTS software meets all the
requirements for clear SOUP, there are no
guarantees that approval of the final product will
proceed according to plan and on schedule. Further
advantage can be gained from working with a COTS
software vendor that has experience with approvals,
and from employing components from that have
received relevant approvals.

Though agencies, such as the FDA, MHRA, Health
Canada and their counterparts in other jurisdictions
approve, not the components, but the entire system
or device for market, components that have received
certifications, such as IEC 61508 or IEC 62304 can
streamline the approval process and reduce time to
market.

To begin with, in order to have received certification,
these components will have to have been developed
in an environment with appropriate processes and
quality management, they will have had to undergo
the proper testing and validation, and the COTS
software vendor will have all the necessary artefacts,
which will in turn support the approval case for the
final device. Finally, a vendor that has experience

Clear SOUP and COTS Software for Medical Device Development Ills QNX Software Systems

10

with certifications will likely be able to offer
invaluable advice and support to his customers.

Conclusion

Neither the IEC 62304 “software for medical
devices” standard, nor the demands of functional
safety preclude the use of COTS software in medical
devices. We must exercise diligence and caution,
but COTS software may be a perfectly acceptable
choice, given stringent selection criteria, and
appropriate and equally stringent validation of the
completed medical systems and devices. In fact, if
we make the fine but critical distinction between
opaque SOUP19 (which should be avoided) and
clear SOUP, that is, SOUP for which source code,
fault histories and long in-use histories are available,
we will find that COTS software may be the optimal
choice for many safety-related medical devices.

Bibliography

AAMI. Medical device software—Part 1: Guidance
on the application of ISO 14971 to medical
device software. Association for the
Advancement of Medical Instrumentation, 2009.

Berard, B. et al. Systems and Software Verification.
Berlin: Springer, 2001.

Birman, Kenneth P. and Thomas A. Joseph.
“Exploiting Virtual Synchrony in Distributed
Systems”. Cornell University. February, 1987.

Birman, Kenneth P. Building Secure and Reliable
Network Applications. Greenwich: Manning,
1996.

FDA. General Principles of Software Validation; Final
Guidance for Industry and FDA Staff. 11 Jan.
2002. <ww.fda.gov/MedicalDevices/
DeviceRegulationandGuidance/
GuidanceDocuments/ucm085281.htm>

FDA, Research Project: Static Analysis of Medical
Device Software, updated 11 Feb. 2011.
<www.fda.gov/MedicalDevices/
ScienceandResearch/ucm243156.htm>

Gerber, Cristoph. “Introduction into software
lifecycle for medical devices”. Freiburg,
Germany: Stryker Navigation. Presentation
(4 Sept. 2008).

19 Opaque SOUP is sometimes, jokingly, called “pea

SOUP” in contrast to clear SOUP, which has not yet
been dubbed “broth”.

Green, Blake. “Understanding Software
Development from a Regulatory Viewpoint”.
Journal of Medical Device Regulation, 6:1 (Feb.
2009), pp. 14-23.

Helminen, Atte. Reliability estimation of safety-
critical software-based systems using Bayesian
networks. Helsinki: Säteilyturvakeskus (Finnish
Radiation and Nuclear Safety Authority), 2001.
http://www.stuk.fi/julkaisut/tr/stuk-yto-tr178.pdf

Hobbs, Chris. “Fault Tree Analysis with Bayesian
Belief Networks for Safety-Critical Software”.
QNX Software Systems, 2010. www.qnx.com.

Hobbs, Chris, et al. “Building Functional Safety into
Complex Software Systems, Part I”. QNX
Software Systems, 2011. www.qnx.com.

___. “Building Functional Safety into Complex
Software Systems, Part II”. QNX Software
Systems, 2011. www.qnx.com.

Holzmann, Gerard J.,The SPIN Model Checker.
Boston: Addison-Wesley, 2004.

International Electrotechnical Commission.
IEC 62304: Medical Device Software–Software
Lifecycle Processes. First edition, 2005-2006.
Geneva: International Electrotechnical
Commission, 2006.

Jackson, Daniel et al., eds. Software for Dependable
Systems: Sufficient Evidence? Washington:
National Academies Press, 2007.

Jackson, Daniel et al., eds. Sufficient Evidence: A
Briefing of the National Academies Study
Software for Dependable Systems.
<cstb.org/pub_dependable>

Kumar, Anil. “Easing the IEC 62304 Compliance
Journey for Developers to Certify Medical
Devices”. Medical Electronic Device Solutions.
20 June 2011.
<www.medsmagazine.com/articles/view/118>

Lions, J. L. et al. Ariane 501 Inquiry Board Report.
Paris: ESA, 1996.

NASA. Agency Risk Management Procedural
Requirements (NP4 8000.4A). NASA, 16 Dec.
2008.

QNX Neutrino RTOS Safe Kernel 1.0: Safety Manual:
QMS0054 1.0. QNX Software Systems, 2010.
www.qnx.com.

Reason, James. Human Error. Cambridge:
Cambridge UP, 1990.

QNX Software Systems Clear SOUP and COTS Software for Medical Device Development Ills

About QNX Software Systems
QNX Software Systems is the leading global provider of innovative embedded technologies, including middleware, development
tools, and operating systems. The component-based architectures of the QNX® Neutrino® RTOS, QNX Momentics® Tool Suite, and
QNX Aviage® middleware family together provide the industry’s most reliable and scalable framework for building high-performance
embedded systems. Global leaders such as Cisco, Daimler, General Electric, Lockheed Martin, and Siemens depend on QNX
technology for vehicle telematics and infotainment systems, industrial robotics, network routers, medical instruments, security and
defense systems, and other mission- or life-critical applications. The company is headquartered in Ottawa, Canada, and distributes
products in over 100 countries worldwide.

www.qnx.com
© 2011 QNX Software Systems Limited, a subsidiary of Research In Motion Ltd. All rights reserved. QNX, Momentics, Neutrino,
Aviage, Photon and Photon microGUI are trademarks of QNX Software Systems Limited, which are registered trademarks and/or
used in certain jurisdictions, and are used under license by QNX Software Systems Limited. All other trademarks belong to their
respective owners. 302208 MC411.95

