
   

Clear SOUP and COTS Software 
for Medical Device Development 
Chris Hobbs, Senior Developer, Safe Systems 
QNX Software Systems Limited 
chobbs@qnx.com 

Abstract 

In many industries, manufacturers have reduced 
development times by using COTS (commercial-off-
the-shelf) software and hardware in their products. 
Pressures to bring new, feature-rich products to 
market quickly affect medical device manufacturers 
as much as anyone, but the industry may be 
reluctant to follow suit due to well-justified concerns 
that COTS implies SOUP (software of uncertain 
provenance), and thus may compromise device 
safety and pre-market approval by the FDA and 
other regulatory agencies. 

While we should indeed exercise diligence and 
caution when considering COTS software for medical 
devices, neither the IEC 62304 “software for medical 
devices” standard, nor the demands of functional 
safety preclude its use. In fact, COTS software may 
be perfectly acceptable, given stringent selection 
criteria, and appropriate and equally stringent 
validation of the completed systems and devices. If 
we make the fine but critical distinction between 
opaque SOUP1 (which should be avoided) and clear 
SOUP, that is, SOUP for which source code, fault 
histories and long in-use histories are available, we 
will find that COTS software may be the optimal 
choice for many safety-related medical devices.  

The Usual Challenges 

Medical device manufactures face the same 
challenges as everyone building complex systems: 
time, quality, size (number and complexity of 
features), and cost. To this we must add functional 
safety, and pre-market approval by the FDA, MDD, 
MHRA, Health Canada and their counterparts in 
every jurisdiction where the device will be used. This 
approval is the sine qua non of medical devices. 
Without it, a device might as well not exist. 

                                                        
1  Opaque SOUP is sometimes, jokingly, called “pea 

SOUP” in contrast to clear SOUP, which has not yet 
been dubbed “broth”. 

That said, approval does not fundamentally change 
the challenges we face when designing a software 
system for a medical device; nor does it 
fundamentally change our choice of solutions. These 
are, essentially, two: a) design and build everything 
ourselves (sometimes called “roll-your-own”), from 
the OS or even the BSP2 up; and b) use available 
software components where possible and 
advantageous, integrating them with our own 
components into the system we design.  

 

Figure 1. Development is a series of compromises 
between feature sets, delivery dates and quality. A change 
to any one of these affects the others. For example, 
shortening the delivery schedule reduces the feature set or 
the quality, or both. The total cost of developing and 
delivering a product is a function of these compromises. 

Roll-your-own is probably only a viable choice for a 
simple system, whose functionality is so limited that 
it doesn’t even require a full OS. For anything more 
complex, attempting to do everything ourselves 
would likely take more time and effort, and entail far 
                                                        
2 Board Support Package: board-specific software for a 

specific OS, containing the minimal device support 
required to load the OS, including a bootloader and 
drivers for the devices on the board.  
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more risk than building a system with carefully 
selected components. The trick, of course, is to 
determine what available software can be integrated 
into our medical system without compromising its 
functional safety and approval requirements, then to 
demonstrate that the completed system meets these 
requirements. 

Deterministic and 
Non-deterministic Systems 

In theory, any software system is deterministic; that 
is, every state and state change in the system can 
be known, documented and tested. In practice, 
however, software systems have become so complex 
that they should be treated as non-deterministic 
systems.3 In practice, we cannot know or predict all 
their possible states and state changes. 

A crucial implication of this practical fact is that it is 
no longer possible to rely wholly on testing when 
validating a software system. A single truth 
underlines why testing is insufficient validation in a 
system where all states and state changes may not 
be known and documented: testing can only 
demonstrate the presence of faults; it cannot prove 
that there are no faults. Medical device software is 
no exception. In fact, in Medical device software—
Part 1: Guidance on the application of ISO 14971 to 
medical device software, the AAMI cautions that a 
pitfall to avoid is “Depending on testing as a RISK 

CONTROL measure—even though 100% testing is 
impossible”4.  

A simple example of an elevator controller illustrates 
well the limits of testing. Figure 2 shows a state 
diagram for such a controller, which sends 
instructions to an elevator and to the elevator doors 
in a building. This controller is very simple, but it 
contains a fault that may not be immediately 
apparent. If, for example, we think of the danger that 
someone might fall into the elevator shaft if a door 
opens without the elevator present and design the 
system to prevent this failure, we have not 
necessarily ensured that someone does not get 
stuck in the elevator. 

                                                        
3 The decreasing cost of multicore processors supporting 

ever-greater and sophisticated feature sets has meant a 
rapid increase in software complexity.  

4 AAMI, Medical device software—Part 1: Guidance on the 
application of ISO 14971 to medical device software, 
2009. p. 55.. 

With the controller shown in Figure 2, we can get on 
the elevator on the bottom floor, then find ourselves 
on an endless journey from floor to floor. The 
elevator doors never need to open. To save 
ourselves, we would have to find a way to get 
someone outside the system to either inject an 
!open instruction when the elevator reaches a floor 
and before the controller issues another !up or 
!down instruction, or to force the controller to issue 
an !open instruction after a specified number of 
ups and downs, in much the same way that 
telecommunications networks drop undeliverable 
packets. 

This simple scenario underlines one of the key 
challenges we face when we attempt to verify even 
very simple systems. We forgot to ask if all elevator 
rides must end, and designed a system with a very 
serious fault. Of course, as a system increases in 
complexity, so will the number of these sorts of 
faults. 

  

Figure 2. A simple elevator system with a fault: there is no 
guarantee that the elevator cage doors open at a floor 
before the elevator is called to another floor.5  

                                                        
5 Adapted from Gerard J. Holzmann, The SPIN Model 

Checker. Boston: Addison-Wesley, 2004. 
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In short, if ever it was possible to use testing to 
demonstrate that a system did not contain faults, 
this was so only because the system was so simple 
that it was deterministic, in both theory and in 
practice6. We could know and test all possible states 
and state changes; we could know and ask every 
required question. Using formal model proving to 
augment testing, we can show the correctness of 
designs but, as the simple elevator example makes 
clear, we can do so only if we ask the right 
questions. We cannot abandon testing, of course, 
but we must treat its results statistically and 
complement it with other methods, such as stringent 
process controls, design validation, and statistical 
analysis of fault histories. 

Functional Safety 

Malfunctions in medical devices don't usually make 
the same sort of headlines as airplane or train 
accidents. For the patient, however, the 
consequences of an error in a medical device 
system may be just as dramatic or tragic, and the 
medical device industry is morally, legally and 
financially bound to ensure as much as is humanly 
possible that its products do no harm.  

Despite the enormous effort invested in validating 
the functional safety of medical devices, faults, 
errors and failures continue to appear. For example, 
the FDA recorded that there were 200,000 
pacemaker recalls due to software in the U.S. 
between 1990 and 2000, and that between 1985 
and 2005 there were 30,000 deaths and 600,000 
injuries from medical devices (1985-2005), of which 
some eight percent were attributable to software.7 

Functional safety refers to the capacity of a safety-
related system to function as it needs to function to 
maintain the safety of the system: it is the 
continuous operation of a safety-related system 
performing its primary task while ensuring that 
persons, property and the environment are free from 

                                                        
6 The Engineering Safety Management Yellow Book 3, 

Application Note 2: Software and EN 50128, published 
by Railway Safety on behalf of the UK railway industry 
even suggests that “if a device has few enough internal 
stored states that it is practical to cover them all in 
testing, it may be better to regard it as hardware.” p. 3. 

7 Daniel Jackson et al., eds. Software for Dependable 
Systems: Sufficient Evidence? Washington: National 
Academies Press, 2007. p. 23. 

unacceptable risk or harm8. In short, a functionally 
safe system does what it is designed to do and 
doesn’t unintentionally harm anyone or anything. A 
radiation therapy unit, for instance, is functionally 
safe if it does not inflict unacceptable harm to the 
operator, other persons or the environment, or 
healthy cells in the patient. Its functional safety is 
not compromised by the harm it may do to 
cancerous cells, because this is its intended use. 

What Is Functional Safety? An Example 

Consider a medical device that emits potentially 
hazardous electro-magnetic radiation (e.g., X-rays). 
If a technician were to remove the protective shield 
while the radiation was turned on it could potentially 
create “unacceptable injury or harm” to her. 

Having identified this hazard, we could address it in 
several ways. We could build the equipment so that 
it would be physically impossible for the shield to be 
removed when the switch was in the “on” position: 
the switch in that position physically covered the 
shield. This solution would be a safe one, but it 
would not be one of functional safety, because 
safety is intrinsic and passive: it does not rely on the 
continued functioning of any subsystem. 

Alternatively, we could create an active subsystem 
that detected the removal of the shield and shut off 
the radiation before it became a hazard. This 
subsystem would constitute functional safety: the 
continued safety of the overall system depends on 
the subsystem continuing to function correctly. 

Thus, building a safe system can rely on both 
passive safety measures (such as a design that 
makes removing the shield impossible) and on 
active measures (a system that detects shield 
removal and shuts down the radiation). In practice, 
most complex systems use a combination of both. In 
the context of our discussion of COTS, the 
assumption is that the safe operation of the medical 
device requires some sort of active system, hence 
functional safety. 

 

Multiple standards exist specifying both what 
constitutes a functionally safe system in a given 
context, and the processes and activities that must 
be scrupulously followed throughout a product or 

                                                        
8  Chris Hobbs et al., “Building Functional Safety into 

Complex Software Systems, Part I”. QNX Software 
Systems, 2011. 
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system lifecycle in order to ensure the product’s or 
system’s functional safety. Among the best known 
are IEC 61508 (electrical, electronic, programmable), 
ISO 26262 (automotive) and the CENLEC 5012x 
series (rail transportation), which define functional 
safety and target safety integrity levels (SIL) for 
systems in their respective areas, and specify the 
processes and activities for demonstrating these.  

IEC 62304 

IEC 62304 is becoming the de facto global standard 
for medical device software life cycle processes. The 
FDA has driven its development, and it is being 
harmonized with EU standard 93/42 EWG (MDD) 9. 
Unlike IEC 61508 and EN 50128, for example, 
IEC 62304 does not define common numerical 
values for acceptable failure rates; conformity to 
IEC 62304 doesn’t imply a SIL rating as does, for 
instance, conformity to IEC 61508, which is 
meaningless without one (e.g. IEC 61508 SIL3). 

IEC 62304 is limited to the “framework of life cycle 
PROCESSES with ACTIVITIES and TASKS necessary for 

                                                        
9 Cristoph Gerber, “Introduction into software lifecycle for 

medical devices”, Stryker Navigation: Presentation 
(4 Sept. 2008) 

the safe design and maintenance 
of MEDICAL DEVICE SOFTWARE”10. It 
makes two assumptions about 
quality management and risk 
management: a) that the software 
for the medical device is 
“developed and maintained within 
a quality management system” 
(i.e. ISO 13485 or ISO 90003); and 
b) that risk management conforms 
to ISO 14971, plus additional 
minor requirements for software 
addressed in IEC 62304, Clause 7. 

Significantly, IEC 62304 does not 
prescribe how its requirements are 
to be met; that is, it does not 
specify a software development 
model or particular documents that 
must be submitted to support 
claims of conformity. IEC 62304 
calls up ISO 14971, which sets the 
requirements for a medical devices 
risk management system. Neither 
of these standards specifies risk 
levels, or prescribes or proposes a 
method for determining the 

probability of software failure based on traditional 
statistical methods11. We are free to choose the 
development model most appropriate to our 
requirements, as we are free to choose the methods 
we ultimately use to validate the functional safety 
claims we make about the systems we build. 

IEC 62304 does, however, set out the processes 
(including a risk management process), activities 
and tasks required throughout the software lifecycle, 
stipulating that this cycle does not end with product 
release, but continues through maintenance and 
problem resolution as long as the software is 
operational. It also defines safety classifications 
according to the level of harm a failure could cause 
to a patient, operator or other person. These 
classifications are analogous to the FDA 
classifications of medical devices: A (no possible 
injury or damage to health), B (possibility of non-
serious injury or harm) and C (possibility of serious 
injury or harm, or death). 

                                                        
10 International Electrotechnical Commission, IEC 62304: 

Medical Device Software—Software Lifecycle Processes. 
First edition, 2005-2006. Geneva: International 
Electrotechnical Commission, 2006. Introduction. 

11 Gerber, slide 19. 

 

Figure 3. Some of the standards contributing to functional safety in medical devices. 
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Finally, and of particular importance in the context 
of this discussion, IEC 62304 explicitly mentions 
SOUP, which it defines as a 

SOFTWARE ITEM that is already developed and 
generally available and that has not been developed 
for the purpose of being incorporated into the 
MEDICAL DEVICE (also known as “off-the-shelf 
software”) or software previously developed for 
which adequate records of the development 

PROCESSES are not available.12 

It is important to note that in the above, IEC 62304 
a) assumes that off-the-shelf software (commercial 
or otherwise) will be used, and b) offers two 
definitions of SOUP, which can be either (or both of) 
software not developed for the medical device in 
question, or software with unavailable or inadequate 
records of its development processes. 

IEC 62304 does not prohibit using SOUP in a 
medical device, and in fact several clauses in the 
standard are written with the assumption that SOUP 
will in fact be used. Section 5.1.1 “Software 
development plans”, for instance, states that “The 
plan shall address … software configuration and 
change management, including SOUP CONFIGURATION 

ITEMS”13, and SOUP is the explicit subject of sections 
such as 5.3.4 “Specify SYSTEM hardware and 
software required by SOUP item”. 

The question, then, is not whether it is permissible 
to use COTS software and/or SOUP in medical 
device software, but a) how to decide whether a 
particular COTS software or SOUP item is 
appropriate for the medical device in question, and 
b) how to validate that this COTS item or SOUP item 
supports the functional safety requirements for this 
medical device. To answer this question we should 
start by attempting to add some precision to our 
definition of SOUP, and to the relationship between 
SOUP and COTS software. 

SOUP and Clear SOUP 

Some software vendors make a rather simplistic—
and incorrect—distinction between COTS and 
SOUP. COTS, they say, has a vendor standing 
behind it, a company that has staked its 
reputation—and, not incidentally, its financial 
future—on this software functioning as specified, 
while SOUP has no one standing behind it. 

                                                        
12 IEC 62304 3.29 SOUP. 
13 IEC 62304 5.1.1 Software development plans. 

This distinction is valid in the same way that it may 
be preferable to buy medication from a reputable 
pharmacy rather than from some web site that uses 
spam to advertise. However, it is also largely 
irrelevant, since for us most COTS software is quite 
likely also SOUP; the processes the vendor followed 
(or failed to follow!), the source code, fault histories, 
and indeed everything else we would have available 
if we were developing the product ourselves may not 
be available to us or to anyone else outside the 
vendor’s organization. 

A more useful distinction is between (opaque) SOUP 
and clear SOUP. This distinction is not based on any 
commercial criteria (commercial or not commercial). 
It is founded in the artefacts available to support a 
safety case for the software. These artefacts are 
needed to support our claims about the risks and 
safety levels of the systems we build with the SOUP. 

Quality and Approval 

Pre-market approval by regulatory agencies is 
inseparable from quality, but the two are not 
interchangeable. First, it is quite easy to image a 
device or tool, such as a syringe, that performs its 
primary function (puncture a vein and draw blood) 
extremely well, but that could never receive approval 
because the process used to manufacture it 
includes no sterilization process; or, the syringe 
could meet all approval requirements: be sharp, 
sterile, and safe and easy to use, but have a 
tendency to disintegrate during initial sterilization 
and thus, though it poses no danger to patients or 
medical practitioners, it does not meet required 
standards for quality. 
 

A COTS system, such as a Microsoft Windows OS, 
may have a well-documented development process, 
its vendor presumable adheres to this well-defined 
and documented development process and is in 
possession of the source code which it can readily 
examine, and has tracked and documented the 
software’s failure history. However, since this 
information is not available for public scrutiny, as far 
as we are concerned the Windows OS is (opaque) 
SOUP.14 

                                                        
14 Here the analogy with a medication bought from a 

reputable pharmacy or through a spamming web site 
falls apart. The medication sold by the pharmacy is not 
like the opaque software: every ingredient (including the 
“inactive” ones), every process used to create or extract 
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OS Architecture 

The OS on which the COTS software runs must 
support the vendor’s functional safety claims. We 
must, therefore, evaluate the OS, and its 
architecture in particular, since the OS architecture 
is critical to system dependability. Important 
characteristics to look for are: 

Pre-emptible kernel operations — to ensure that the 
system meets realtime commitments, the 
RTOS must allow kernel operations to be 
preempted, and time windows during which 
preemption may not occur should be brief. 

Memory protection — the OS architecture should 
separate applications and critical processes 
in their own memory spaces so that a fault 
cannot propagate across the system. 

Priority inheritance—to protect against priority 
inversions the RTOS should support 
assigning, until the blocking task completes, 
the priority of a blocked higher-priority task to 
the lower-priority thread doing the blocking. 

Partitioning — to guarantee availability, the RTOS 
should support fixed or, preferably, adaptive 
partitioning, which enforces resource budgets 
but uses a dynamic scheduling algorithm to 
reassign CPU cycles from partitions that are 
not using them to partitions that can benefit 
from extra processing time. 

High availability — a self-starting software watchdog 
should monitor, stop and, if safety can be 
assured, restart processes without requiring a 
system reset. 

 

In contrast, open source projects such as Apache 
and Linux have their source code and fault histories 
freely available to anyone who cares to examine 
them. Thanks to years of active service, this 
software’s characteristics are well known. Like in-
house software, this software, though it is, literally, 
“of uncertain provenance”, can be scrutinized with 
code symbolic execution and path coverage 
analysis, and the software’s long (and freely 

                                                                                      
these ingredients, and the finished medication must be 
available for regulatory scrutiny. This is why 
pharmaceutical and biotechnology companies rely so 
heavily on their patents; they may not keep trade secrets, 
and hence patents are their only protection.  

available) history make findings from statistical 
analysis particularly relevant. 

Hence, we can consider software developed in these 
open source projects clear SOUP; that is, SOUP that 
we can examine, verify and validate as though we 
had written it ourselves. 

Despite these attractive characteristics, open source 
software may not be the best solution for medical 
systems, however. The difficulty with using open 
source software in functionally safe systems is that 
the processes for open source development are 
neither clearly defined nor well documented—and 
this is precisely what concerns IEC 62304. We can’t 
know how the software was designed, coded or 
verified, and validating functional safety claims 
without this knowledge is an improbable endeavour. 
Add to this that SOUP or COTS software may include 
more functionality than is needed, which leaves 
dead code in the system, a practice that functional 
safety standards, such as IEC 61508, expressly 
discourage. 

Of course, if a COTS software vendor makes 
available its product’s source code and fault history, 
it clarifies its SOUP. Some vendors choose to go one 
better and provide, not just clear SOUP, but a clear 
recipe for the SOUP. That is, they release to their 
customers the detailed processes they use to build 
their software, along with its complete development 
history—essentially an informal audit trail that we 
can use to help substantiate claims about the 
software’s reliability and availability. Some vendors 
may even go a step further and make available for 
scrutiny the evidence they presented in order to 
obtain certification (e.g. IEC 61508 SIL3) for their 
product. 

In addition to its importance for the medical device’s 
initial approval, the COTS software recipe for clear 
SOUP (documented development and validation 
artefacts and histories, and documented processes) 
can prove invaluable for subsequent validation and 
approval following product upgrades.15 It is worth 
noting, for example, that 

In a study the FDA conducted between 1992 and 
1998, 242 out of 3,140 device recalls (7.7 percent) 
were found to be due to faulty software. Of these, 
192—almost 80 percent—were caused by defects 
introduced during software maintenance. 

                                                        
15 See Anil Kumar, “Easing the IEC 62304 Compliance 

Journey for Developers to Certify Medical Devices” 
Medical Electronic Device Solutions, 20 June 2011. 
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In other words, the faults were introduced after the 
devices had gone to market: the devices worked, 
and then someone either broke them or uncovered 
previously undiscovered faults. Ideally, then, when 
developing and maintaining and upgrading software 
systems for medical devices where functional safety 
is an issue (IEC 62304 B and C class devices) we 
should work with clear SOUP made with a clear 
recipe that has a long and well-documented history 
of success in the field. 

Shopping for COTS Software 

At the highest level, the question we must ask of any 
COTS software we are considering for a medical 
device is “What proofs does the software vendor 
provide that his product is what we need?” In 
addition to all the standard questions about 
functionality, features, cost, support and so on, this 
question must include “Will this COTS software 
support us in getting approval for our medical 
device?” 

If we assume that, since we did not develop it 
ourselves, all COTS software is SOUP of some sort, 
then we must find out what sort of SOUP it is. If it 
proves to be “software previously developed for 
which adequate records of the development 
PROCESSES are not available” we may have difficulty 
justifying its use in our system. First, validating 
functional safety claims for systems with such 
software requires substantial additional effort and 
expense. Second, this software cannot meet the 
IEC 62304 requirement for well-documented and 
rigorously followed software lifecycle processes. 

If, on the other hand, the COTS software is clear 
SOUP, our task may be significantly less arduous. 
That is, if the software was not “developed for the 
purpose of being incorporated into the MEDICAL 

DEVICE” but adequate records of its development 
processes are available, it may be a good candidate 
for our medical device.  

COTS Checklist 

The following can be used as a high-level checklist 
to help us determine if a specific COTS component 
is a good candidate for integration into our medical 
device software system—essentially, if the COTS 
software is clear SOUP. Our decisions concerning 
the COTS software will necessarily depend on how 
well it supports the functional safety and compliance 
requirements we have specified for our complete 
system. 

Functional Safety Claims 
We can begin by examining the functional safety 
claims the COTS software vendor makes about his 
software. 

Does the vendor make any functional safety 
claims? 

 

Do these claims meet the functional safety 
requirements for our project? 

 

Are the context and limits of the claims 
specified? For instance, are these claims for 
continuous operation or for on-demand 
operation? 

 

Do the COTS software functional safety claims 
specify the probability of dangerous failure? Or, 
inversely, what claims does the vendor make 
about the software’s dependability? 

 

Does the vendor define “sufficient 
dependability”, and how does he quantify his 
dependability claims? For example, is the 
quantification of the (essentially meaningless) 
“five-nines” type, or does it provide meaningful 
information about availability and reliability in 
relevant contexts? 

 

Does the vendor quantify the COTS software 
claims of:  

 Availability: How often does the system 
respond to events in a timely manner? 

 Reliability: How often are these responses 
correct? 

 

 

Process 
A defined and documented process covering the 
entire software lifecycle is a sine qua non 
requirement; without this, we need not go further. 

Has the COTS software vendor implemented a 
quality management system (QMS)? 

 

Does this system meet the requirements of one 
of: 

 The ISO 9000 family of QMS standards? 

 ISO 15504 (Software Process Improvement 
Capability Determination (SPICE)? 

 Capability Maturity Model Integration 
(CMMI)? 
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What processes does the vendor use for source 
control, including revisions and versions? 

 

How does the vendor document, track and 
resolve defects, including those found through 
verification and validation, and in the field? 

 

Does the vendor classify defects and follow up 
with fault analysis? 

 

 

Fault-tree Analysis 
Fault-tree analysis, using a method such as 
Bayesian believe networks is an essential tool both 
for discovering and resolving design errors, and for 
estimating system dependability. It also provides 
artefacts that can be reviewed by auditors and 
agencies that must approve the medical device for 
market.16 

Was the COTS software evaluated with fault-
tree analysis? 

 

Did the analysis use both a priori (cause to 
effect) and a posteriori (effect to cause) 
evidence? 

 

Are the results of the fault-tree analysis 
available to us? 

 

Static Analysis 
Static analysis is invaluable for locating suspect 
code, and its use has been recommended by 
agencies such as the FDA,17 which is “investigating 
various static analysis techniques, e.g., symbolic 
execution, abstract interpretation, and reverse 
engineering, and applying these to analyze software 
in medical devices….” The goal of this undertaking 
is to improve the ability of the FDA’s Center for 
Devices and Radiological Health (CDRH) “to assess 
software quality, both during pre-market and post-
market reviews” and to “improve the state-of-the-art 
in static analysis technology by improving precision 
and efficiency of static analysis tools, specifically 
applied to medical device software”.18 

                                                        
16 See Chris Hobbs, “Fault Tree Analysis with Bayesian 

Belief Networks for Safety-Critical Software”, 2010.  
17 For example, “static analyses provide a very effective 

means to detect errors before execution of the code…” 
FDA, General Principles of Software Validation; Final 
Guidance for Industry and FDA Staff. 11 Jan. 2002. 

18 FDA, Research Project: Static Analysis of Medical Device 
Software, updated 11 Feb. 2011. 

 

Figure 3. A very simple fault tree. Failures are numbered 
(1,2, etc.), while letters identify leaves (A, B, etc.)..  
 

Does the COTS software vendor use static 
analysis to identify potential problems in his 
product? 

 

What static analysis techniques does the 
vendor use? 

 Syntax checking against published coding 
standards? 

 Fault probability estimates? 

 Correctness proofs (e.g. assertions in the 
code)? 

 Symbolic execution (static analysis-hybrid)? 

 

What artefacts does the COTS software vendor 
provide to support the findings from his static 
analyses? 

 

 

Proven-In-Use Data 
Proven-in-use data is invaluable when reviewing 
COTS software dependability claims, and for 
building claims. Anyone building a system for which 
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one day (even in the very distant and nebulous 
future) he may be required to show proof of 
dependability should build gathering in-use data into 
his business model. 

Can the COTS software vendor provide proven-
in-use data? 

 

How far back does the data go?  

How comprehensive is the data? 

 What is the sample size for which data is 
available? 

 Does this sample represent a small or large 
percentage of the vendor’s runtimes? 

 How does the vendor gather this data?  

 

Does the vendor provide fault analysis results 
with the proven-in-use data, or just usage data? 

 

Design Artefacts 
Design and validation artefacts are one of the key 
differences between SOUP and clear SOUP. If the 
COTS software vendor cannot provide an extensive 
set of artefacts, there is little reason to select his 
wares over open source software. 

What design artefacts does the COTS software 
vendor provide with his software? 

 

Does the vendor provide: 

 Architectural design documents? 

 Detailed design documents? 

 

What are the test plans and methods for the 
COTS software, and does the vendor publish 
the detailed results? 

 

What other validation methods does the COTS 
software vendor use (see other sections above), 
and are the methods and detailed results 
available? 

 

Does the vendor maintain and make available a 
traceability matrix, from requirements to 
deliver, and is it available for scrutiny?  

 

What records does the vendor keep of the 
software life cycle, including: 

 Changes? 

 Issues and their resolutions? 

 

 

The Safety Manual 
The Safety Manual is another sine qua non 
requirement. If the COTS software does not include 
a Safety Manual, return the product to the shelf and 
try another vendor. 

Does the Safety Manual state the functional 
safety claims for the COTS software? 

 

Does the Safety Manual define the context and 
constraints for the COTS software functional 
safety claims? These should include the 
environment and the usage where the 
functional safety claims are valid. For example: 

 “This list of processor architectures is 
exhaustive.” 

 “Floating point operations SHALL NOT be 
performed in a signal handler.” 

 “Critical budgets are limited to the window 
size.” 

 

Does the vendor provide training on the safe 
application of the product? 

 

Certified Components 

Even if all the above recommendations have been 
followed, and the COTS software meets all the 
requirements for clear SOUP, there are no 
guarantees that approval of the final product will 
proceed according to plan and on schedule. Further 
advantage can be gained from working with a COTS 
software vendor that has experience with approvals, 
and from employing components from that have 
received relevant approvals. 

Though agencies, such as the FDA, MHRA, Health 
Canada and their counterparts in other jurisdictions 
approve, not the components, but the entire system 
or device for market, components that have received 
certifications, such as IEC 61508 or IEC 62304 can 
streamline the approval process and reduce time to 
market. 

To begin with, in order to have received certification, 
these components will have to have been developed 
in an environment with appropriate processes and 
quality management, they will have had to undergo 
the proper testing and validation, and the COTS 
software vendor will have all the necessary artefacts, 
which will in turn support the approval case for the 
final device. Finally, a vendor that has experience 
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with certifications will likely be able to offer 
invaluable advice and support to his customers. 

Conclusion 

Neither the IEC 62304 “software for medical 
devices” standard, nor the demands of functional 
safety preclude the use of COTS software in medical 
devices. We must exercise diligence and caution, 
but COTS software may be a perfectly acceptable 
choice, given stringent selection criteria, and 
appropriate and equally stringent validation of the 
completed medical systems and devices. In fact, if 
we make the fine but critical distinction between 
opaque SOUP19 (which should be avoided) and 
clear SOUP, that is, SOUP for which source code, 
fault histories and long in-use histories are available, 
we will find that COTS software may be the optimal 
choice for many safety-related medical devices.  
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